Lecture 11
|sothermal Sphere
Consider an ideal gas which is self-gravitating and isothermal

$$
p=\frac{\rho k_{B} T}{m} \quad \text { ideal gas } k_{B} \text { Boltzmann constant }
$$

p pressure
Equation of hydrostatic sugpact:
T tengenstere
m mass per particle
(i) $\frac{d p}{d r}=\frac{k_{B} T}{m} \frac{d \rho}{d r}=-\rho \frac{G M(r)}{r^{2}}$
ρ density
prof:
 dp net pressure on thin special shell

$$
-\underbrace{\int 4 \pi r^{2} d r}_{\text {mass of shell }} \frac{G \cdot M(r)}{r^{2}} \quad \begin{aligned}
& \text { gravitational force } \\
& \text { on spherical shell }
\end{aligned}
$$

balancing force form pressure: $4 \pi \tau^{2}$.dp

$$
\begin{align*}
4 \pi r^{2} d p & =-4 \pi r^{2} \rho \frac{G \cdot M(r)}{r^{2}} d r \\
\frac{d p}{d r} & =-\rho \frac{G \cdot M(r)}{r^{2}} \tag{I}
\end{align*}
$$

$$
\frac{d M(r)}{d r}=4 \pi r^{2} \rho
$$

multiply (1) by $\frac{r^{2} m}{\rho k_{B} T}$ aut take $\frac{d}{d r}$ on
both sides:

$$
\begin{aligned}
& r^{2} \frac{1}{\rho} \frac{d \rho}{d r}=-\frac{m G M(r)}{k_{B} T} \\
& \frac{d}{d r} \ln \rho=\frac{1}{\rho} \frac{d \rho}{d r}
\end{aligned}
$$

(2) $\frac{d}{d r}\left(r^{2} \frac{d \ln \rho}{d r}\right)=-\frac{G \cdot m}{k_{B} T} 4 \pi r^{2} \cdot \rho$

Independentl, introduce now a sinple DF f for q steady-state spherical distribution:
(3) $f(\varepsilon)=\frac{\rho_{1}}{\left(2 \pi \sigma^{2}\right)^{3 / 2}} e^{\frac{\varepsilon}{\sigma^{2}}}=\frac{\rho_{1}}{\left(2 \pi \sigma^{2}\right)^{3 / 2}} \exp \left(\frac{\psi-\frac{1}{2} v^{2}}{\sigma^{2}}\right)$

$$
\begin{gathered}
\varepsilon=-E+\phi_{0}=\psi-\frac{1}{2} v^{2} \\
\psi=-\phi_{1}+\phi_{0} \quad \varepsilon>0 \text { for bounl } \\
\begin{array}{c}
\text { venishes at infinity pricles }
\end{array}
\end{gathered}
$$

$$
\begin{aligned}
& \rho=4 \pi G \int f d^{3} V \\
& \rho=\rho_{1} e^{\frac{\psi}{\sigma^{2}}}
\end{aligned}
$$

(4) $\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d \psi}{d r}\right)=-4 \pi G \cdot \rho \quad$ Poisson Equation
(5) $\quad \frac{d}{d r}\left(r^{2} \frac{d \ln \rho}{d r}\right)=-\frac{4 \pi G}{\sigma^{2}} r^{2} \rho \quad u \sin y \quad \rho=\rho_{1} e^{\frac{4}{\sigma^{2}}}$
choosing $\sigma^{2}=\frac{k_{B} T}{m} \quad E q .5$ becomes identical to Eq. 2 of isothermal self-grositating ideal gas

Physical explanation: The distribution of velocities at each point in the stellar-dymanical isothermal system (sphere) is the Maxwell dishitution

$$
F(v)=N e^{-\frac{1}{2} \frac{v^{2}}{\sigma^{2}}}
$$

Kinetic theory, however, tells us that this is also the equilibrium Maxsell-Boltzmann distribution which would emerge if the stars ware allowed to bounce elastically off each other like the molecules of a gas. Therefore, if the DF of a system is given by Eq. 3 it is a matter of indifference whether he particles of the system collide with one mother ir not.

The mean-square speed of stars at a point in the isothermal sphere is

$$
\begin{aligned}
& \overline{v^{2}}=\frac{\int_{0}^{\infty} \exp \left(\frac{\psi-\frac{1}{2} v^{2}}{\sigma^{2}}\right) v^{4} d v}{\int_{0}^{\infty} \exp \left(\frac{\psi-\frac{1}{2} v^{2}}{\sigma^{2}}\right) \cdot v^{2} d v}=2 \sigma^{2} \frac{\int_{0}^{\infty} x^{4} e^{-x^{2}} d x}{\int_{0}^{\infty} x^{2} e^{-x^{2}} d x}=36^{2} \\
& \overline{v^{2}}=36^{2} \quad \text { independent of position }
\end{aligned}
$$

The dispersion in any one congruent of velocity, for example, $\left(\overline{\sigma_{r}^{2}}\right)^{\frac{1}{2}}$ is equal to σ

It is cary to find one solution of Eq. 5 :

$$
\begin{gathered}
\rho=c \cdot r^{-6} \quad \text { Ausatz } \\
\frac{d}{d r} \ln \rho=-b \frac{1}{r} \\
\frac{d}{d r}\left(r^{2} \frac{d}{d r} \ln \rho\right)=-b \quad \rightarrow-\frac{4 \pi G}{\sigma^{2}} c \cdot r^{2-6} \\
b=2 \\
\rho(r)=\frac{\sigma^{2}}{2 \pi G \cdot r^{2}}
\end{gathered} \quad C=\frac{2 \sigma^{2}}{4 \pi G} .
$$

singular isothermal sphere

We want solutions which are well behaved at origin.

$$
\tilde{\rho}=\frac{\rho}{\rho_{0}}, \tilde{r}=\frac{\hat{r}}{r_{0}} \text { rescaled variables }
$$

$r_{0}=\sqrt{\frac{96^{2}}{4 \pi G \cdot \rho_{0}}} \quad$ King radius where density fobs $10.0 .5013 \rho_{0}$
So central density
Eq. 5 becomes
(6)

$$
\frac{d}{d \tilde{r}}\left(\tilde{r}^{2} \frac{d \ln \tilde{\rho}}{d \tilde{r}}\right)=-g \tilde{r}^{2} \tilde{\rho}
$$

न

$$
\begin{equation*}
\frac{d}{d \tilde{r}}\left[\tilde{r}^{2} \frac{d\left(\psi / \sigma^{2}\right)}{d \tilde{r}}\right]=-g \tilde{r}^{2} \exp \left[\frac{\psi(r)-\psi(0)}{\sigma^{2}}\right] \tag{7}
\end{equation*}
$$

numeral integration with $\tilde{\rho}(0)=1$ and $\frac{d \tilde{\rho}}{d \tilde{r}}=0$ boundary conditions:

dashed line is the density profile of singular isothermal where Total mass is infinite

The circular speed at r is given by

$$
\begin{equation*}
v_{c}^{2}(r)=\frac{G \cdot M(r)}{r} \tag{8}
\end{equation*}
$$

From Eq. (1)

$$
\begin{aligned}
& \sigma^{2} \frac{d \rho}{d r}=-\rho \frac{G M}{r^{2}}=-\rho v_{c}^{2} \frac{1}{r} \\
& -\sigma^{2} d \ln \rho=v_{c}^{2} d \ln r \\
& r_{c}^{2}=-\sigma^{2} \frac{d \ln \rho}{d \ln r}
\end{aligned}
$$

numerically:

for lope $\frac{r}{r_{0}} \quad v_{c}=\sqrt{2} \sigma$

We would like L undify now isothermal sphere in a uniminal fashion to mate the that mass finite

King Model
(9)

$$
\begin{aligned}
& f_{k}(\varepsilon)= \begin{cases}\rho_{1}\left(2 \pi \sigma^{2}\right)^{-\frac{3}{2}}\left(e^{\left.\frac{\varepsilon}{\sigma^{2}}-1\right)}\right. & \varepsilon>0 \\
0 & \varepsilon \leq 0\end{cases} \\
& \rho_{k}(\psi)=\frac{4 \pi \rho_{1}}{\left(2 \pi \sigma^{2}\right)^{3 / 2}} \int_{0}^{\sqrt{2 \psi}}\left[\exp \left(\frac{\psi-\frac{1}{2} v^{2}}{\sigma^{2}}\right)-1\right] v^{2} d v
\end{aligned}
$$

(10)

$$
\begin{gathered}
=\rho_{1}\left[e^{\frac{\psi}{\sigma^{2}}} \cdot \operatorname{erf}\left(\frac{\sqrt{\psi}}{\sigma}\right)-\sqrt{\frac{4 \psi}{\pi \sigma^{2}}}\left(1+\frac{2 \psi}{3 \sigma^{2}}\right)\right] \\
\operatorname{erf}(z)=\frac{2}{\sqrt{\pi}} \int_{0}^{z} e^{-t^{2}} d t \\
\operatorname{erf}(0)=0 \\
\lim _{x \rightarrow \infty}(1-\operatorname{erf}(x))=\frac{e^{-x^{2}}}{\sqrt{\pi} x}
\end{gathered}
$$

Poisson equation:

$$
\frac{d}{d r}\left(r^{2} \frac{d \psi}{d r}\right)=-4 \pi G \cdot \rho_{1} \cdot r^{2}\left[e^{\frac{\psi}{\sigma^{2}}} \cdot \operatorname{erf}\left(\frac{\sqrt{\psi}}{\sigma}\right)-\sqrt{\frac{4 \psi}{\pi \sigma^{2}}}\left(1+\frac{2 \psi}{3 \sigma^{2}}\right)\right]
$$

(II)

$$
\left.\begin{array}{l}
\psi(0) \\
\frac{d \psi}{d r}=0
\end{array}\right\} \text { boundery couditims }
$$

King unodels form a single sequence as a function of $\psi(0) / \sigma^{2}$. In the limit $\psi(0) / \sigma^{2} \rightarrow \infty$, the sequence goes rover into the isothermal sphere.

$$
\frac{\psi(0)}{\sigma^{2}}=12,9,6,3
$$

seopence

The parmucter 6 is not exactly the actual velocity dispersion $\left(\overline{v^{2}}\right)^{\frac{1}{2}}$ of the stars.

$$
\begin{gathered}
\bar{v}^{2}=3 \overline{v_{r}^{2}} \\
\overline{v^{2}(1)}=\frac{J_{2}}{v_{0}} \quad v_{n}=\int_{0}^{\sqrt{2 \psi}}\left[\exp \left(\frac{\psi-\frac{1}{2} v^{2}}{\sigma^{2}}\right)-1\right] v^{n+2} d v
\end{gathered}
$$

numerial relocity profile of King sequance:

$$
\frac{\psi(0)}{\sigma^{2}}=12,9,6,3
$$

