
1. Setup distribution of N particles

2. Compute forces between particles

3. Evolve positions using ODE solver

4. Display/analyze results

Leap-frog scheme
Define positions (x) and forces (F) at time level n

velocities (v) at time level n+1/2
Then, for ith particle

n-1 n-1/2 n n+1/2 n+1 time
x, F v x, F v x, F

To start integration, need initial x and V at two separate time levels.

Specify x0 and v0 and then integrate V to ∆t/2 using high-order scheme

Accuracy of leap-frog scheme
Can show the truncation error in leap-frog is second order in ∆t

Evolution eqns:

Replace Vn-1/2 in second equation using first

Substitute this back into first equation

Rearrange

This is central difference formula for F=ma.

Let X(t) be the “true” (analytic) solution.
Then

Use a Taylor expansion to compute Xn+1 and Xn-1

Substitute these back into eq. 1

EQ. 1

Thus

Truncation error O(∆t2)

Truncation versus round-off error
Note the error we have just derived is truncation error

Unavoidable result of approximating solution to some order in x or t

Completely unrelated to round-off error, which results from
representing the continuous set of real numbers with a finite number
of bits.

Truncation error can be reduced by using smaller step ∆t, or higher-
order algorithm

Round-off error can be reduced by using higher precision (64 bit
rather than 32, etc.), and by ordering operations carefully.

In general, truncation error is much larger than round-off error

Stability of leap-frog scheme

Easiest to illustrate with an example. Suppose the force is given by a
harmonic oscillator, that is:

Then “true” (analytic) solution is

Substitute force law into leap-frog FDE for F=ma

Look for oscillatory solutions of the form x = x0eiωt

giving

This is good! Leap-frog (correctly) gets oscillatory solutions, but
at a modified frequency

Note this gives correct solution (Ω) as ∆t --> 0

For Ω∆t > 2, frequency becomes complex.

Real part of ω’ gives oscillatory solution, imaginary part gives
exponentially growing (unstable) solution.

So stability limit is ∆t < 2/Ω; or ∆t < 2/[(dF/dx)/m]1/2 in general

Above is a simple example of a von-Neumann stability analysis

Consistency of leap-frog scheme
Leap-frog is consistent in the sense that as ∆t --> 0, the
difference equations converge to the differential equations

Leap-frog is also a symplectic method (time symmetric).
Scheme has same accuracy for ∆t negative.

n-1 n-1/2 n n+1/2 n+1 time
x, F v x, F v x, F

Efficiency of leap-frog scheme

Leap-frog is extremely efficient in terms of computational cost
(only 12 flops per particle excluding force evaluation)

Also extremely efficient in terms of memory storage (does not
require storing multiple time levels).

All the work (and memory) is in force evaluation: 10N flops per
particle for direct summation

To update all particle positions in one second on a 1 Gflop
processor requires N < 104

Extra efficiency can be gained by using different timesteps for
each particle (more later).

Variable time steps with leap-frog
For efficiency, need to take variable time steps (evolve particles
at center of cluster on smaller timestep than particles at edge).

QuickTime™ and a
YUV420 codec decompressor

are needed to see this picture.

Variable time steps with leap-frog

n-1 n-1/2 n n+1/2 n+1 time
x, F v x, F v x, F

However, this destroys symmetry of leap-frog; greatly increases
truncation error.

Hut, Makino, & McMillan 1995
But, variable timestep leap-frog can be symmetrized

Force evaluation with variable time steps.

Now particle positions are known at different time levels.

Greatly complicates force calculation. Must compute derivatives
of force wrt time, and use Taylor expansion to compute total
force on particle at current position.

The Good: Allows higher-order (Hermite) integration methods.

The Bad: This just makes force evaluation even more expensive!

The Ugly: Direct N-body must be optimized if we are to go
beyond 104 particles.

Solving the force problem with hardware.

Jun Makino, U. Tokyo

Special purpose
hardware to
compute force:

GRAPE-6
• The 6th generation of GRAPE

(Gravity Pipe) Project
• Gravity calculation

with 31 Gflops/chip
• 32 chips / board ⇒ 0.99 Tflops/board
• 64 boards of full system is installed in University of Tokyo
⇒ 63 Tflops

• On each board, all particle data are set onto SRAM
memory, and each target particle data is injected into the
pipeline, then acceleration data is calculated

• Gordon Bell Prize at SC2000, SC2001
(Prof. Makino, U. Tokyo)
also nominated at SC2002

Andromeda – 2 million light years away

Do we really need to compute force from every star for distant objects?

Solving the force problem with software -- tree codes

Distance = 25 times size

Organize particles into a tree. In Barnes-Hut algorithm, use a
quadtree in 2D

In 3D, Barnes-Hut uses an octree

If angle subtended by the particles contained in any node of tree is
smaller than some criterion, then treat all particles as one.

Results in an Nlog(N) algorithm.

Alternative to Barnes-Hut is KD tree.

• KD tree is binary - extremely
efficient
• Requires N to be power of 2
• Nnodes = 2N-1

Parallelizing tree code.

– Equal particles ≠ equal work.

• Solution: Assign costs to particles based on the work they do

– Work unknown and changes with time-steps

• Insight : System evolves slowly

• Solution: Count work per particle, and use as cost for next
time-step.

Best strategy is to distribute particles across processors. That way,
work of computing forces and integration is distributed across procs.

Challenge is load balancing

A Partitioning Approach: ORB
• Orthogonal Recursive Bisection:

– Recursively bisect space into subspaces with equal
work

• Work is associated with bodies, as before

– Continue until one partition per processor

• High overhead for large no. of processors

Another Approach: Costzones
• Insight: Tree already contains an encoding of

spatial locality.

• Costzones is low-overhead and very easy to program

(a) ORB (b) Costzones

P1 P2 P3 P4 P5 P6 P7 P8

Space Filling Curves

Morton Order Peano-Hilbert Order

	Leap-frog scheme
	Accuracy of leap-frog scheme
	Truncation versus round-off error
	Stability of leap-frog scheme
	Consistency of leap-frog scheme
	Efficiency of leap-frog scheme
	Variable time steps with leap-frog
	Variable time steps with leap-frog
	Force evaluation with variable time steps.
	Solving the force problem with hardware.
	GRAPE-6
	
	Parallelizing tree code.
	A Partitioning Approach: ORB
	Another Approach: Costzones
	Space Filling Curves

