### 7.53

We are told that the same flux passes through every turn of both coils. Call this flux $\Phi$. Then the total flux passing through the first coil is $\Phi_{1}=\Phi N_{1}$, while the total flux passing through the second is $\Phi_{2}=\Phi N_{2}$. If one of the currents, say $I_{1}$, is changing, then there is an induced emf in coil 2 and a back emf in coil 1 . The induced emf in coil 2 is given by $\mathcal{E}_{2}=-d \Phi_{2} / d t=-N_{2} d \Phi / d t$. The back emf in coil 1 is given by $\mathcal{E}_{1}=-d \Phi_{1} / d t=$ $-N_{1} d \Phi / d t$. We see that the ratio of the induced emf to the back emf is just $N_{2} / N_{1}$.

### 7.55

(a)

Start from the charge conservation law:

$$
\begin{equation*}
\nabla \cdot \vec{J}=-\frac{\partial \rho}{\partial t} . \tag{1}
\end{equation*}
$$

Differentiate both sides with respect to time:

$$
\begin{equation*}
\frac{\partial}{\partial t} \nabla \cdot \vec{J}=\nabla \cdot \frac{\partial \vec{J}}{\partial t}=0=-\frac{\partial^{2} \rho}{\partial t^{2}} . \tag{2}
\end{equation*}
$$

This implies that $\rho$ is a linear function of time:

$$
\begin{equation*}
\rho(\vec{r}, t)=\rho(\vec{r}, 0)+\dot{\rho}(\vec{r}, 0) t . \tag{3}
\end{equation*}
$$

(b)

We want to check that the Biot-Savart expression for the magnetic field,

$$
\begin{equation*}
\vec{B}(\vec{r})=\frac{\mu_{0}}{4 \pi} \int d^{3} r^{\prime} \frac{\vec{J}\left(\vec{r}^{\prime}\right) \times \hat{\zeta}}{\zeta^{2}} \tag{4}
\end{equation*}
$$

with $\vec{\zeta}=\vec{r}-\vec{r}^{\prime}$, satisfies the modified Ampere's law:

$$
\begin{equation*}
\nabla \times \vec{B}=\mu_{0} \vec{J}+\mu_{0} \epsilon_{0} \frac{\partial \vec{E}}{\partial t} \tag{5}
\end{equation*}
$$

Taking the curl of the Biot-Savart law gives

$$
\begin{equation*}
\nabla \times \vec{B}=\frac{\mu_{0}}{4 \pi} \int \frac{\nabla \times(\vec{J} \times \hat{\zeta})}{\zeta^{2}}=\frac{\mu_{0}}{4 \pi} \int\left[-(\vec{J} \cdot \nabla) \frac{\hat{\zeta}}{\zeta^{2}}+\vec{J}\left(\nabla \cdot \frac{\hat{\zeta}}{\zeta^{2}}\right)\right] \tag{6}
\end{equation*}
$$

From equation 1.100 in the text, we know that

$$
\begin{equation*}
\nabla \cdot \frac{\hat{\zeta}}{\zeta^{2}}=4 \pi \delta(\vec{\zeta}) \tag{7}
\end{equation*}
$$

so (6) becomes

$$
\begin{equation*}
\nabla \times \vec{B}=-\frac{\mu_{0}}{4 \pi} \int(\vec{J} \cdot \nabla) \frac{\hat{\zeta}}{\zeta^{2}}+\mu_{0} \vec{J} \tag{8}
\end{equation*}
$$

Note that this calculation is essentially identical to that given in section 5.3.2 of the text. Here too, we can replace the $\nabla$ operator on unprimed coordinates with the operator $-\nabla^{\prime}$ on primed coordinates. We may then do an integration by parts on the remaining integral in (8). As in section 5.3.2, we get two terms, one of which is a total divergence which becomes a vanishing surface integral. Whereas in section 5.3.2, the second term from the integration by parts was also vanishing, here it is not. It is of the form

$$
\begin{equation*}
-\frac{\hat{\zeta}}{\zeta^{2}} \nabla^{\prime} \cdot \vec{J}=\frac{\hat{\zeta}}{\zeta^{2}} \frac{\partial \rho}{d t} \tag{9}
\end{equation*}
$$

Plugging this into (8) gives

$$
\begin{equation*}
\nabla \times \vec{B}=\frac{\mu_{0}}{4 \pi} \frac{\partial}{\partial t} \int \rho \frac{\hat{\zeta}}{\zeta^{2}}+\mu_{0} \vec{J}=\mu_{0} \epsilon_{0} \frac{\partial \vec{E}}{\partial t}+\mu_{0} \vec{J} \tag{10}
\end{equation*}
$$

In the last step, we used that the electric field is given by Coulomb's law:

$$
\begin{equation*}
\vec{E}=\frac{1}{4 \pi \epsilon_{0}} \int \rho \frac{\hat{\zeta}}{\zeta^{2}} \tag{11}
\end{equation*}
$$

7.60
(a)

We will check this one equation at a time. First look at equation (i) of 7.43:

$$
\begin{equation*}
\nabla \cdot \vec{E}=\frac{1}{\epsilon_{0}} \rho_{e} . \tag{12}
\end{equation*}
$$

We make the replacements

$$
\begin{align*}
\vec{E} \rightarrow \vec{E}^{\prime} & =\vec{E} \cos \alpha+c \vec{B} \sin \alpha \\
\rho_{e} \rightarrow \rho_{e}^{\prime} & =\rho_{e} \cos \alpha+\frac{1}{c} \rho_{m} \sin \alpha \tag{13}
\end{align*}
$$

Plugging these into (12) and rearranging gives

$$
\begin{equation*}
\cos \alpha \nabla \cdot \vec{E}=\frac{1}{\epsilon_{0}} \rho_{e} \cos \alpha+\left(\frac{1}{\epsilon_{0} c} \rho_{m} \sin \alpha-c \sin \alpha \nabla \cdot \vec{B}\right) . \tag{14}
\end{equation*}
$$

The terms in parentheses cancel by virtue of Maxwell equation (ii), and after canceling the $\cos \alpha$ from the remaining terms, we get back equation (12). Equation (ii) of 7.43 is verified in a very similar manner.

Now consider equation (iii) of 7.43 :

$$
\begin{equation*}
\nabla \times \vec{E}=-\mu_{0} \vec{J}_{m}-\frac{\partial \vec{B}}{\partial t} \tag{15}
\end{equation*}
$$

We need to make the following replacements:

$$
\begin{align*}
\vec{E} & \rightarrow \vec{E}^{\prime}=\vec{E} \cos \alpha+c \vec{B} \sin \alpha \\
\vec{J}_{m} & \rightarrow \vec{J}_{m}^{\prime}=\vec{J}_{m} \cos \alpha-c \vec{J}_{e} \sin \alpha  \tag{16}\\
\vec{B} & \rightarrow \vec{B}^{\prime}=\vec{B} \cos \alpha-\frac{1}{c} \vec{E} \sin \alpha
\end{align*}
$$

Plugging these into (15) gives

$$
\begin{equation*}
\cos \alpha \nabla \times \vec{E}+c \sin \alpha \nabla \times \vec{B}=-\mu_{0} \vec{J}_{m} \cos \alpha+\mu_{0} c \vec{J}_{e} \sin \alpha-\cos \alpha \frac{\partial \vec{B}}{\partial t}+\frac{1}{c} \sin \alpha \frac{\partial \vec{E}}{\partial t} \tag{17}
\end{equation*}
$$

The terms multiplying $\sin \alpha$ cancel by virtue of Maxwell equation (iv), and after canceling the remaining $\cos \alpha$ everywhere, we get back equation (15). Verification of equation (iv) follows similarly.
(b)

Here is the force law:

$$
\begin{equation*}
\vec{F}=q_{e}(\vec{E}+\vec{v} \times \vec{B})+q_{m}\left(\vec{B}-\frac{1}{c^{2}} \vec{v} \times \vec{B}\right) . \tag{18}
\end{equation*}
$$

We need to do the following transformation:

$$
\begin{align*}
\vec{E}^{\prime} & =\vec{E} \cos \alpha+c \vec{B} \sin \alpha, \\
\vec{B}^{\prime} & =\vec{B} \cos \alpha-\frac{1}{c} \vec{E} \sin \alpha,  \tag{19}\\
q_{e}^{\prime} & =q_{e} \cos \alpha+\frac{1}{c} q_{m} \sin \alpha, \\
q_{m}^{\prime} & =q_{m} \cos \alpha-c q_{e} \sin \alpha .
\end{align*}
$$

Plugging in and expanding, we find three types of terms: ones having coefficient $\sin ^{2} \alpha$, ones with $\cos ^{2} \alpha$ and ones with $\sin \alpha \cos \alpha$. The terms with $\sin \alpha \cos \alpha$ all cancel. Here are the remaining terms:

$$
\begin{align*}
& q_{e}(\vec{E}+\vec{v} \times \vec{B}) \cos ^{2} \alpha+q_{m}\left(\vec{B}-\frac{1}{c^{2}} \vec{v} \times \vec{E}\right) \sin ^{2} \alpha \\
+ & q_{e}(\vec{E}+\vec{v} \times \vec{B}) \sin ^{2} \alpha+q_{m}\left(\vec{B}-\frac{1}{c^{2}} \vec{v} \times \vec{E}\right) \cos ^{2} \alpha \tag{20}
\end{align*}
$$

These terms can be combined pairwise to reproduce the force law (18).

