
Homework 6 Solutions

7.38

In example 3.8 of the book, we learn that the potential due to a conducting sphere in

an otherwise uniform electric field is given by

V (r, θ) = −E0

(
r − R3

r2

)
cos θ. (1)

For a ¿ d, this result still holds for the geometry shown in Fig. 7.48. This is because

the deviations in the uniform electric field caused by the sphere will disappear far away

from the sphere. So near the upper plate, the field will be uniform and will satisfy the

appropriate boundary condition at the plate. You might worry that the solution won’t

work for the hemisphere, but a quick inspection of (1) reveals that the boundary condition

V = 0 at θ = π/2 is already satisfied by the solution for the whole sphere, so this solution

is immediately applicable to the hemisphere as well by restricting to θ ≤ π/2.

The electric field is given by

~E = −∇V = E0

[
r̂

(
1 +

2R3

r3

)
cos θ − 1

r
θ̂

(
r − R3

r2

)
sin θ

]
. (2)

The current density is given by ~J = σ ~E. The current into the sphere is found by computing

the flux of the current density through the surface of the sphere:

I =
∫

~J · d~a = σ

∫
~E · r̂a2dΩ = 3σa2E0

∫ 2π

0

∫ π/2

0

dφdθ sin θ cos θ

= 3πσa2E0 = 3πσa2V0/d.

(3)

7.42

(a)

The constancy of ~B follows immediately from Maxwell’s equation. Since ~E vanishes

inside a perfect conductor, so must its curl, and therefore ∂ ~B/∂t = 0 inside a perfect

conductor.

(b)
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This also follows directly from Maxwell’s equation. A loop of perfectly conducting

wire, like any other perfect conductor, has vanishing electric field inside. Therefore, if we

integrate Faraday’s law over an area enclosed by the loop, we find that the magnetic flux

through that area is constant:

∇× ~E = −∂ ~B

∂t
⇒

∫
d~a · ∇ × ~E =

∮
~E · d~̀ = 0

= −
∫

d~a · ∂ ~B

∂t
= −∂Φ

∂t
.

(4)

(c)

The fact that the current in a superconductor is relegated to the surface stems imme-

diately from the fourth Maxwell equation:

µ0
~J = ∇× ~B − µ0ε0

∂ ~E

∂t
. (5)

If both the electric and magnetic fields vanish inside a conductor, then the RHS of the

above equation vanishes, implying that the current density vanishes inside the conductor,

ie any current within the superconductor must be at the surface.

(d)

This is similar to example 3.8 from the text, except here we are talking about a

magnetic field instead of an electric field. That is, we know that ~B vanishes inside the

sphere, and that as we go to infinity, ~B → B0ẑ. The problem is to find ~B everywhere

outside the sphere. We can then look at how ~B changes across the surface of the sphere

to determine the surface current.

Actually, we won’t even bother to find ~B. We can instead find the vector potential ~A

and use that the normal derivative of ~A as we approach the surface from outside is equal

to −µ0
~K, where ~K is the surface current (see equation 5.76 of the text). Finding ~A turns

out to be exactly the same problem as finding the scalar potential in example 3.8. To see

this, first let’s choose the following asymptotic form of the vector potential:

~A → − 1
2~r × ~B = 1

2rB0 sin θφ̂ as r →∞. (6)

This looks very similar to the asymptotic form of the scalar potential in example 3.8,

except that we have a sine instead of a cosine. However, this difficulty is easily dispensed
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with by defining a new spherical coordinate system where the new z axis is orthogonal to

the direction of the ~B field. That is, the new polar angle χ is given by χ = π/2 − θ. We

then have the following boundary conditions on Aφ:

Aφ = 0 at r = a, Aφ → 1
2rB0 cos χ as r →∞. (7)

Aφ must satisfy Laplace’s equation, so the problem is now identical to that of example 3.8.

The solution is then

Aφ = 1
2B0

(
r − a3

r2

)
sin θ. (8)

The normal derivative of this is just the derivative with respect to r. Evaluated at the

surface of the sphere, this is

−µ0
~K =

∂ ~A

∂r

∣∣∣
r=a

=
3
2
B0 sin θφ̂. (9)

An alternative solution is to consider the magnetic field inside a rotating spherical

shell. This is given in equation 5.68 of the text:

~B =
2
3
µ0σωaẑ. (10)

We can think of this as the field due to a surface current on the shell. In order to have a

vanishing magnetic field inside the shell, we need this magnetic field (the one due to the

surface current) to cancel the constant external field, ~B = B0ẑ. In other words, we need

2
3
µ0σωaẑ = −B0ẑ ⇒ σωa = −3

2
B0

µ0
. (11)

The surface current is given by ~K = σ~v, so we find

~K = σωa sin θφ̂ = −3B0

2µ0
sin θφ̂. (12)

This agrees with our previous answer.

7.48

The equation describing cyclotron motion (eqn 5.3) is

mv = eBos. (13)
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m is the mass of the electron, v is its tangential velocity, e is its electric charge, Bo is the

magnetic field at the orbit, and s is the radius of the circular orbit. If we differentiate both

sides of this equation with respect to time, we find

m
dv

dt
= es

∂Bo

∂t
+ eBo

ds

dt
. (14)

Rearranging this a bit, we have

ds

dt
=

m

eBo

dv

dt
− s

Bo

∂Bo

∂t
. (15)

We would like to write the right hand side of this equation in terms of the average magnetic

field over the area enclosed by the orbit, 〈B〉.
To do this, we need to consider the electric field generated by the changing magnetic

field. From Faraday’s law, we have

∂ ~B

∂t
= −∇× ~E. (16)

If we integrate (3) over the area enclosed by the orbit, we find

∂

∂t

∫
d~a · ~B = πs2 ∂

∂t
〈B〉 = −

∫
d~a · ∇ × ~E = −

∮
~Eo · d~̀ = 2πsEo. (17)

~Eo is the electric field at the orbit. It is tangential to the orbit and accelerates the electron

according to

m
d~v

dt
= ~F = e ~Eo. (18)

In (5), we have chosen d~a to be parallel to the z component of ~B (in fig 7.52, this means

the −z direction), so ~Eo is antiparallel to d~̀, hence the extra minus sign. From (5) and

(6), we then see that
m

e

dv

dt
= 1

2s
∂

∂t
〈B〉. (19)

Plugging this into (3), we get

ds

dt
=

s

Bo

∂

∂t

(
1
2 〈B〉 −Bo

)
. (20)

We see that choosing the magnetic field such that 〈B〉 = 2Bo ensures that the orbital

radius s is independent of time.

7.50
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The changing current in the solenoid induces an emf E around the square loop given

by E = −dΦ/dt, where Φ is the magnetic flux through the square loop. This is the same

as the flux through the cross section of the solenoid since the magnetic field is zero outside

the solenoid. The flux through the cross section of the solenoid is given to us as αt, so

E = −α.

The induced emf drives a current around the square loop. From figure 7.53 and from

Lenz’s law, we see that the current travels counterclockwise through the square loop. By

assumption, no current travels through either voltmeter. The induced current is given by

I = E/(R1 + R2). Since the current travels counterclockwise, the voltage across R1 is

positive, while the voltage across R2 is negative. The magnitude of the voltage across each

resistor is given by V = IR, so V1 = αR1/(R1 + R2) and V2 = −αR2/(R1 + R2).
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