6.23

(a)

The transcription $\vec{D} \rightarrow \vec{B}, \vec{E} \rightarrow \vec{H}, \vec{P} \rightarrow \mu_{0} \vec{M}, \epsilon_{0} \rightarrow \mu_{0}$ tells us that the determination of \vec{H} inside a uniformly magnetized sphere of magnetization \vec{M} will be exactly the same calculation as that of \vec{E} for a uniformly polarized sphere of polarization \vec{P}. The latter problem was done for us in example 4.2 , with the result that $\vec{E}=-\vec{P} / 3 \epsilon_{0}$. This tells us that for our current problem, $\vec{H}=-\vec{M} / 3$. This then tells us the magnetic field inside the sphere:

$$
\begin{equation*}
\vec{B}=\mu_{0}(\vec{H}+\vec{M})=\frac{2}{3} \mu_{0} \vec{M} \tag{1}
\end{equation*}
$$

This agrees with equation 6.16 in the book.
(b)

The electrostatic analog of this problem was done in example 4.7 with the result

$$
\begin{equation*}
\vec{E}=\frac{3}{\epsilon_{r}+2} \vec{E}_{0} \tag{2}
\end{equation*}
$$

\vec{E}_{0} is the background field, and $\epsilon_{r} \equiv \epsilon / \epsilon_{0}$. Inside media, $\vec{B}=\mu \vec{H}$ and $\epsilon \vec{E}=\vec{D}$, so it is clear that we also have the correspondence $\epsilon \rightarrow \mu$. We want to find \vec{B} inside the sphere, so we should rewrite our answer for the electrostatic problem in terms of \vec{D}, which is the analog of \vec{B} :

$$
\begin{equation*}
\vec{D}=\epsilon \vec{E}=\frac{3 \epsilon}{\epsilon_{r}+2} \frac{1}{\epsilon_{0}} \vec{D}_{0} \tag{3}
\end{equation*}
$$

Applying our transcription rules then gives us the \vec{B} field:

$$
\begin{equation*}
\vec{B}=\frac{3 \mu_{r}}{\mu_{r}+2} \vec{B}_{0} \tag{4}
\end{equation*}
$$

where we define $\mu_{r} \equiv \mu / \mu_{0}$.
(c)

We have essentially already done this problem. We know that the average electric field over a sphere with an arbitrary charge distribution and total dipole moment \vec{p} (eqn 3.105),

$$
\begin{equation*}
\vec{E}_{\text {ave }}=-\frac{1}{4 \pi \epsilon_{0}} \frac{\vec{p}}{R^{3}} \tag{5}
\end{equation*}
$$

is the same as the field due to a uniformly polarized sphere (eqn 4.14):

$$
\begin{equation*}
\vec{E}=-\frac{1}{3 \epsilon_{0}} \vec{P} \tag{6}
\end{equation*}
$$

This is because the total dipole moment is given by $\vec{p}=\frac{4 \pi R^{3}}{3} \vec{P}$. By the transcription quoted in the problem, we expect that the average \vec{H} field over the sphere is the same as the field due to a uniformly magnetized sphere. We have found the latter in part (a) using the correspondence between electrostatics and magnetostatics:

$$
\begin{equation*}
\vec{H}=-\frac{1}{3} \vec{M}=\vec{H}_{a v e} \tag{7}
\end{equation*}
$$

We can also show that a similar relation holds for the \vec{B} field:

$$
\begin{equation*}
\vec{B}=\mu_{0}(\vec{H}+\vec{M}) \quad \Rightarrow \quad \vec{B}_{\text {ave }}=\mu_{0}\left(\vec{H}_{\text {ave }}+\vec{M}\right)=\frac{2}{3} \mu_{0} \vec{M} \tag{8}
\end{equation*}
$$

We can replace \vec{M} with the total magnetic dipole moment of the sphere, $\vec{m}=\frac{4 \pi R^{3}}{3} \vec{M}$, yielding

$$
\begin{equation*}
\vec{B}_{a v e}=\frac{\mu_{0}}{4 \pi} \frac{2 \vec{m}}{R^{3}} \tag{9}
\end{equation*}
$$

in agreement with equation 5.89.

6.24

The electric field for a uniformly charged sphere of radius R and charge density ρ is given by

$$
\vec{E}=\frac{\rho \hat{r}}{3 \epsilon_{0}}\left\{\begin{array}{cc}
r & r<R \tag{10}\\
\frac{R^{3}}{r^{2}} & r>R
\end{array}\right\} .
$$

It is also given by an integral:

$$
\begin{equation*}
\vec{E}=\frac{\rho}{4 \pi \epsilon_{0}} \int_{\text {sphere }} d^{3} r^{\prime} \frac{\left(\vec{r}-\vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|^{3}} \tag{11}
\end{equation*}
$$

From these two expressions we see that

$$
\frac{1}{4 \pi} \int_{\text {sphere }} d^{3} r^{\prime} \frac{\left(\vec{r}-\vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|^{3}}=\frac{\hat{r}}{3}\left\{\begin{array}{cc}
r & r<R \tag{12}\\
\frac{R^{3}}{r^{2}} & r>R
\end{array}\right\} .
$$

First, we will compute the scalar potential of a uniformly polarized sphere using this result. The potential is

$$
V=\frac{1}{4 \pi \epsilon_{0}} \int_{\text {sphere }} d^{3} r^{\prime} \frac{\left(\vec{r}-\vec{r}^{\prime}\right) \cdot \vec{P}\left(\vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|^{3}}=\frac{\vec{P}}{4 \pi \epsilon_{0}} \cdot \int_{\text {sphere }} d^{3} r^{\prime} \frac{\left(\vec{r}-\vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|^{3}}=\frac{\vec{P} \cdot \hat{r}}{3 \epsilon_{0}}\left\{\begin{array}{cc}
r & r<R \tag{13}\\
\frac{R^{3}}{r^{2}} & r>R
\end{array}\right\} .
$$

This agrees with the result given in example 4.2.
Next, we'll apply (11) to the computation of the vector potential for a uniformly magnetized sphere.

$$
\begin{align*}
\vec{A} & =\frac{\mu_{0}}{4 \pi} \int_{\text {sphere }} d^{3} r^{\prime} \frac{\vec{M}\left(\vec{r}^{\prime}\right) \times\left(\vec{r}-\vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|^{3}}=\frac{\vec{M} \mu_{0}}{4 \pi} \times \int_{\text {sphere }} d^{3} r^{\prime} \frac{\left(\vec{r}-\vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|^{3}} \tag{14}\\
& =\frac{\mu_{0} \vec{M} \times \hat{r}}{3}\left\{\begin{array}{cc}
r & r<R \\
\frac{R^{3}}{r^{2}} & r>R
\end{array}\right\} .
\end{align*}
$$

You can check that the curl of the expression for $r>R$ is what we found for the magnetic field of a uniformly magnetized sphere in part (a) of problem 6.23 above.

