
Homework 4 Solutions

5.58

(a)

The solid sphere has a constant charge density ρ = 3Q/4πR3. We will divide the

sphere into a bunch of rings as in problem 5.56 of homework 3, only now we have a

continuum of rings of varying radius for each value of the polar angle θ. The charge of

each volume element is ρr2 sin θdrdθdφ, so the charge of each ring is dQ = 2πρr2 sin θdrdθ.

The current in each ring is thus dI = dQω/2π = ρωr2 sin θdrdθ. The radius of each ring is

r sin θ, so the corresponding dipole moment is d~m = ẑπρωr4 sin3 θdrdθ. To find the total

dipole moment of the sphere, we need to integrate this over all values of θ and r:

~m =
∫ R

0

∫ π

0

d~m =
QR2ω

5
ẑ. (1)

A simple check of this result is to recall from homework 3 that the gyromagnetic ratio

of a rotating charged ring of charge Q and mass M is Q/2M . We also found the same

ratio for a rotating hollow charged sphere. In fact, any object which can be described as a

collection of rings will have this same ratio, including the solid sphere we are considering

here. A well known result from classical mechanics is that the moment of inertia of a solid

sphere is 2MR2/5. Multiplying this by ω (to get the angular momentum) and then by the

ratio Q/2M , we see that we get back (1).

(b)

Note that we could immediately apply equation 5.89 from the text using the result

from part (a). However, to get a feel for how to tackle more difficult problems, we’ll work

a little harder for the answer. We’ll start with another result from problem 5.57:

〈 ~B〉 =
3

4πR3

∫

V

~B =
3

4πR3

∫

V

∇× ~A = − 3
4πR3

∮

S

~A× d~a. (2)

V is the solid sphere, and S is its surface. Next, we substitute in for ~A using

~A =
µ0

4π

∫
d3r′

~J(~r′)
|~r − ~r′| . (3)
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The current density is given by

~J(~r′) = ρωr′ sin θ′φ̂′. (4)

This should be compared with the quantity dI of part (a): dI is just the area element

r′dθ′dr′ times ~J . Putting it all together, we get

〈 ~B〉 = − 3µ0ρω

16π2R3

∫
d3r′r′ sin θ′φ̂′ ×

∮

S

d~a

|~r − ~r′| . (5)

From problem 5.57 in the book, the surface integral above is 4π~r′/3. We then get

〈 ~B〉 = −µ0ρω

4πR3

∫
dr′dθ′dφ′r′4 sin2 θ′φ̂′ × r̂′ = −µ0ρωR2

20π

∫
dθ′dφ′ sin2 θ′θ̂′. (6)

In cartesian coordinates, θ̂′ is

θ̂′ = (cos θ′ cosφ′, cos θ′ sin φ′,− sin θ′). (7)

The first two components will integrate to zero when we perform the φ′ integral. The

integral then reduces to

〈 ~B〉 =
µ0ρωR2

10
ẑ

∫
dθ′ sin3 θ′ =

2µ0ρωR2

15
ẑ =

µ0Qω

10πR
ẑ. (8)

This agrees with what we would get from equation 5.89.

(c)

The limit r À R is the dipole limit. The vector potential for a dipole moment has

already been derived in equation 5.85:

~Adip(~r) =
µ0

4π

m sin θ

r2
φ̂. (9)

Plugging in the result from part (a) gives

~Adip(~r) =
µ0ωQR2 sin θ

20πr2
φ̂. (10)

(d)
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Now we are going to find ~A exactly. We will use the hint, which means using the

answer for a rotating spherical shell of radius R′, given in example 5.11 in the book:

~A(~r) =
σωµ0R

′4

3r2
sin θφ̂. (11)

We should be able to get ~A for the solid sphere case by adding up this solution for all

values of the radius R′, from 0 to R. Before we do this, we should write the surface charge

density σ in terms of our volume charge density ρ: σ = ρdR′. The sum over shells becomes

an integral which is easy to perform:

~A(~r) =
ρωµ0

3r2
sin θφ̂

∫ R

0

dR′R′4 =
ρωµ0R

5

15r2
sin θφ̂ =

Qωµ0R
2

20πr2
sin θφ̂. (12)

This is exactly the same as the approximate value we got in part (c)! When you think

about it though, it is not at all surprising that we got the correct answer in part (c). Now

that we know the correct answer, it is clear from the form of (18) that if we keep only the

leading order term in powers of R2/r2, we get back the exact answer since it contains only

one such power, ie the full answer is the leading order term in this expansion.

(e)

We can again make use of the results from example 5.11 to compute the magnetic

field inside the rotating sphere. Let’s recall these results:

~Ashell =

{
σωµ0R′

3 r sin θφ̂, r ≤ R′
σωµ0R′4

3
sin θ
r2 φ̂, r ≥ R′

}
. (13)

As in part (d), we can integrate the shell solutions to obtain the solution for the solid

sphere. If we want to compute ~Asolidsphere(r, θ, φ) inside the sphere, then we need to

integrate ~Ashell
inside for R′ > r, integrate ~Ashell

outside for R′ < r, and add the two results:

~Asolidsphere
inside (r, θ, φ) =

∫ R

r

dR′ ~Ashell
inside(R

′, r, θ, φ) +
∫ r

0

dR′ ~Ashell
outside(R

′, r, θ, φ). (14)

Plugging in from (19), replacing σ → ρdR′, and doing the integrals gives

~A =
ρωµ0

3

[
1
2
r(R2 − r2) +

1
5
r3

]
sin θφ̂. (15)

Next, we take the curl of this expression to find the magnetic field inside the sphere:

~B = ∇× ~A =
ρωµ0

3

{
r̂

[
R2 − 3

5
r2

]
cos θ − θ̂

[
R2 − 6

5
r2

]
sin θ

}
. (16)
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Finally, we’d like to take the average of this result and check that it agrees with the answer

from part (b):

〈 ~B〉 =
3

4πR3

∫

V

~B. (17)

We’ll start with the angular pieces:

〈r̂ cos θ〉 =
1
4π

∫ π

0

dθ

∫ 2π

0

dφ sin θr̂ cos θ =
1
3
ẑ,

〈θ̂ sin θ〉 =
1
4π

∫ π

0

dθ

∫ 2π

0

dφ sin θθ̂ sin θ = −2
3
ẑ.

(18)

Plugging these results into (22) and (23) and collecting terms then leads to

〈 ~B〉 =
ρωµ0

R3
ẑ

∫ R

0

drr2(R2 − r2) =
2ρωµ0R

2

15
ẑ =

µ0Qω

10πR
ẑ. (19)

This agrees with equation (8) above.

5.60

(a)

We write the vector potential as

~A =
µ0

4π

∫
d3r′

~J(~r′)
|~r − ~r′| . (20)

As in equation 5.77, we can expand the denominator of the integrand:

1
|~r − ~r′| =

1√
r2 + r′2 − 2rr′r̂ · r̂′ =

1
r

∞∑
n=0

(
r′

r

)n

Pn(r̂ · r̂′). (21)

Plugging this into (26) gives the multipole expansion:

~A =
µ0

4π

∞∑
n=0

1
rn+1

∫
d3r′r′nPn(r̂ · r̂′) ~J(~r′). (22)

(b)

The monopole potential is given by the first term in the above expansion:

~A(~r)mon =
µ0

4π

1
r

∫
d3r′ ~J(~r′). (23)
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Obviously, if this is to vanish, we need to show that the integral of ~J vanishes. We can

replace this integral with an integral over the curl of the magnetic field:
∫

d3r′ ~J =
1
µ0

∫
d3r′∇× ~B =

1
µ0

∮
d~a× ~B. (24)

In the last step, we used the identity from problem 1.60b of the book. In this case the

volume integral is over all space, and the surface integral is over the “surface at infinity”. To

make this well defined, we can imagine integrating over a large ball of radius R, performing

the surface integral as a function of R, and then taking R → ∞. However, we must have

the ~B field vanishing at infinity since the current sources are localized—if they were not

localized, the multipole expansion would not be sensible. Therefore, ~B vanishes at infinity,

and the surface integral vanishes.

An alternative solution is to exploit an identity given in problem 5.7 of the text. This

relates the integral over the current density to the time derivative of the electric dipole

moment: ∫

V

~J =
d~p

dt
. (25)

For magnetostatics, the electric dipole moment must be constant in time, so we see that

the integral of ~J must vanish.

(c)

We want to express the dipole moment of a current distribution (described by ~J) as

an integral over the volume occupied by that distribution. To do this, we will divide the

distribution into infinitesimal current elements and determine the contribution to ~m made

by each such element.

We begin with equation 5.84 from the text:

~m = I

∫
d~a. (26)

Equation 1.107 allows us to rewrite this as

~m =
I

2

∮
~r × d~̀. (27)

Let’s be clear about what these expressions mean. Equation (31) says that the dipole

moment of a loop of current I enclosing an area
∫

da is the product of I with the area

vector of this area,
∫

d~a. Equation (32) says that we may write the area vector as an
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integral over the loop enclosing its associated area and thus express ~m in terms of this
integral. In these expressions, we do not concern ourselves with the cross section of the
loop, ie the thickness of the wire. We have already integrated over this thickness when we
describe the current with the quantity I. In particular, I =

∫
d~a′ · ~J , where

∫
da′ is the

cross-sectional area, and ~J is the usual current density. (
∫

da′ is not to be confused with
the area enclosed by the loop,

∫
da.) If we shrink the cross-sectional area to infinitesimal

size, then ~J is constant over this area and in the d~̀ direction. From this and (32) above,
we see that an infinitesimal element of the loop makes the following contribution to the
dipole moment:

d~m = 1
2J~r × d~̀da′ = 1

2~r × ~Jd`da′ = 1
2~r × ~Jd3r. (28)

To find the total dipole moment, we integrate this to obtain the desired expression.

5.61

We will think of the rotating cylinder as a stack of magnetic dipoles. The dipole
moment of each current ring is

d~m = dI

∫
d~a = πR2ẑdI = πR3ωσẑdz. (29)

The magnetic field of a dipole is quoted in problem 5.33:

~Bdip =
µ0

4π

1
r3

[3(~m · r̂)r̂ − ~m] . (30)

To find the total magnetic field at a distance s from the center of the glass rod, we must
integrate over this stack of dipoles:

~B =
µ0R

3ωσ

4

∫ L/2

−L/2

dz
3(r̂ · ẑ)r̂ − ẑ

(s2 + z2)3/2
. (31)

Here, we’ve used that the magnitude of the vector from the dipole to the measurement
point is given by r =

√
s2 + z2. This comes from ~r = sŝ − zẑ. From this, we can also

deduce that
r̂ =

s√
s2 + z2

ŝ− z√
s2 + z2

ẑ. (32)

Plugging this into (36), we get

~B =
µ0R

3ωσ

4

∫ L/2

−L/2

dz
3

[
z2

s2+z2 ẑ − sz
s2+z2 ŝ

]
− ẑ

(s2 + z2)3/2
. (33)

The integral proportional to ŝ vanishes since it is an odd function of z. We are then left
with

~B =
µ0R

3ωσ

4
ẑ

∫ L/2

−L/2

dz
2z2 − s2

(s2 + z2)5/2
= − µ0R

3ωσL

4(s2 + L2

4 )3/2
ẑ. (34)
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