
Homework 3 Solutions

5.50

(a)

We know the solution to the following set of equations:

∇ · ~B = 0, ∇× ~B = µ0
~J. (1)

This is just the Biot-Savart law:

~B(~r) =
µ0

4π

∫
d3r′

~J(~r′)× (~r − ~r′)
|~r − ~r′|3 . (2)

Therefore, if we want to solve this set of equations:

∇ · ~A = 0, ∇× ~A = ~B, (3)

it’s obvious that we just need to take µ0
~J → ~B in (2):

~A(~r) =
1
4π

∫
d3r′

~B(~r′)× (~r − ~r′)
|~r − ~r′|3 . (4)

(b)

The solution to this set of equations:

∇ · ~E = ρ/ε0, ∇× ~E = 0, (5)

is just
~E(~r) =

1
4πε0

∫
d3r′

(~r − ~r′)ρ(~r′)
|~r − ~r′|3 . (6)

We’d like to use an analogous set of equations to solve for the electric potential V in terms

of ~E. This is a bit trickier than in the magnetic case discussed in part (a) because V is

not a vector, and we apparently only have one equation for V :

∇V = − ~E, (7)

which does not look very similar to the first equation of (5). In particular, it involves a

different differential operator. There are several ways to get around this difficulty. Here,
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we will try to change (5) to make it look like (7). This is easily accomplished by taking

the gradient of both sides of the first equation in (5):

∇(∇ · ~E) =
1
ε0
∇ρ. (8)

This equation is just like (7), with V → ∇ · ~E and − ~E → 1
ε0
∇ρ. The solution to (8) is of

course just the divergence of (6):

∇ · ~E =
1

4πε0

∫
d3r′ρ(~r′)∇ · ~r − ~r′

|~r − ~r′|3 , (9)

where the divergence is on the unprimed coordinates. This divergence is worked out on

page 50 of the text, and it is equal to 4π times a Dirac delta function, giving back equation

(5) as it must. However, we don’t want to do this simplification here; instead, we want to

rewrite equation (9) in terms of∇ρ. First note that in (9) we may replace the divergence on

unprimed coordinates ∇· with minus the divergence on primed coordinates −∇′· because

the thing being differentiated picks up a minus sign when we swap ~r ↔ ~r′. Then, using

integration by parts, we get:

∇ · ~E =
1

4πε0

∫
d3r′

[
−∇′ ·

(
ρ(~r′)

~r − ~r′

|~r − ~r′|3
)

+
~r − ~r′

|~r − ~r′|3 · ∇
′ρ(~r′)

]
. (10)

The integral of the first term in the integrand becomes a surface integral at infinity when

we apply the divergence theorem. We will assume that ρ vanishes sufficiently quickly as

we go to infinity so that this surface integral vanishes. We are then left with

∇ · ~E =
1

4πε0

∫
d3r′

~r − ~r′

|~r − ~r′|3 · ∇
′ρ(~r′). (11)

We may now use the analogy between (7) and (8) to write down the potential in terms of
~E:

V (~r) = − 1
4π

∫
d3r′

~r − ~r′

|~r − ~r′|3 ·
~E(~r′). (12)

5.53

(a)

The equations for ~W are exactly analogous to those of ~A. In particular, ~W is related

to ~B in exactly the same way that ~A is related to µ0
~J . We can therefore immediately

write down an expression for ~W in terms of ~B:

~W (~r) =
1
4π

∫
d3r′

~B(~r′)
|~r − ~r′| . (13)
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(b)

Making use of the hint, we know that for a constant ~B field, we can write the vector

potential in cylindrical coordinates as

~A(s) = 1
2sBφ̂. (14)

Here, we have chosen to orient the ~B field along the z direction. This expression is the

same as that given in problem 5.24 with ~B taken to be in the z direction. (Note, however,

that the expression in 5.24 is not unique.) We don’t want to plug this into (13) because

that expression for ~W is only valid for magnetic fields that behave appropriately at spatial

infinity. Here, the magnetic field is constant everywhere, so we should look for another

way to solve the problem. Fortunately, there is a lot of symmetry in the setup, so we can

use the analog of Ampére’s law:
∮

d~̀ · ~W =
∫

d~a · ∇ × ~W =
∫

d~a · ~A. (15)

Now the right hand rule that we use to determine the direction of a magnetic field from

the direction of the current that generates it stems directly from Maxwell’s equation. This

same rule therefore describes the relationship between the directions of ~A and ~B as well

as between those of ~W and ~A. Here, the right hand rule tells us that ~W must be in the z

direction. Therefore, we choose a rectangular loop with two sides of length L parallel to

the z axis, one at s = 0 and one at s = R. The other two sides connect the first two and

are perpendicular to the z axis, so their length is immaterial. We can also conclude that
~W depends only on s by the symmetry of the problem ( ~A depends only on s, and ~B is

independent of all coordinates). Using these facts, the integral becomes
∮

d~̀ · ẑW (s) = L (W (0)−W (R)) =
1
2
B

∫
d~a · φ̂s =

1
4
R2BL. (16)

In the above, we’ve chosen to orient the loop so that d~a is in the positive φ̂ direction. W (0)

is just an arbitrary constant which we set to zero. Therefore, we find that

~W (s) = −1
4
s2Bẑ. (17)

I leave it to you to check that ∇× ~W = ~A and ∇ · ~W = 0.

(c)
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From example 5.12 in the book, the vector potential inside and outside an infinitely

long solenoid is
~A(s) =

µ0nI

2
φ̂

{
s s < R

R2

s s > R

}
. (18)

Inside the solenoid, the magnetic field is constant and pointing in the z direction, so we

have the same story as in part (b) above. For outside the solenoid, we can choose the same

loop as in part (b) (except we’ll take the two sides parallel to z to be at s0 and s) and

again do Ampere’s law:

W (s) = −R2B

2

∫ s

s0

ds′
1
s′

= −BR2

2
log

s

s0
. (19)

Here, B = µ0nI is the magnitude of the magnetic field inside the solenoid. s0 is arbitrary

since adding a constant to ~W doesn’t change ~A. However, if we choose the ~W field inside

the solenoid to be exactly the same as in part (b), then this arbitrariness is fixed already

since we made the choice ~W (0) = 0. s0 is then fixed by demanding that ~W be continuous

across the boundary of the two regions, ie at the solenoid:

Winside(s = R) = −1
4
BR2 = Woutside(s = R) = −1

2
BR2 log

R

s0
⇒ s0 =

R√
e
. (20)

In summary,
~W (s) = − 1

2Bẑ

{
s2/2 s < R

R2 log (s
√

e/R) s > R

}
. (21)

5.56

(a)

Denote the angular frequency by ω: the donut rotates through ω radians per unit time.

The current is thus I = Qω/2π, and the magnetic moment is m = I × πR2 = 1
2QR2ω,

where R is the radius of the donut. The angular momentum of the donut is L = MR2ω.

The gyromagnetic ratio is therefore m/L = Q/2M .

(b)

We will take Griffiths advice and think of the sphere as a collection of rings. We can

solve the problem without further calculation beyond that of part (a) by making a series of

observations. First, note that the total dipole moment will just be the sum of all the dipole

moments of all the constituent rings. From the result of part (a), we see that we may write
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the dipole moment of each ring in terms of its angular moment: dm = (dQ/2dM)dL. Here,

dm, dQ, dM , and dL refer to the dipole moment, charge, mass, and angular momentum

of some particular ring in the sphere. Now, since the sphere has uniform charge and mass,

the ratio dQ/dM must be the same for every ring, and furthermore, must be the same as

the charge to mass ratio of the entire sphere, Q/M . Therefore, the dipole moment of each

ring may be expressed in terms of its angular momentum according to dm = (Q/2M)dL.

As we have said, the dipole moment of the entire sphere is just the sum of the moments of

all the constituent rings. The same can be said for the angular momentum of the sphere,

so we have m = (Q/2M)L. The gyromagnetic ratio is therefore Q/2M . Notice that we

haven’t used any details about the sphere, only that it could be decomposed into rings.

Therefore, the same answer applies to any object that can be thus decomposed.

We can also show the result for the sphere by direct calculation. The charge density

of the sphere is σ = Q/4πR2. (Note: if you did the solid sphere here, you should receive

full credit.) The charge of each ring is dQ =
∫ 2π

0
σR2 sin θdθdφ = 2πσR2 sin θdθ. The

current due to each ring is dI = ωdQ/2π = ωσR2 sin θdθ. The dipole moment per ring is

dm = π(R sin θ)2dI = πωσR4 sin3 θdθ. Integrating this over θ gives the dipole moment of

the sphere: m = ωQR2/3.

Next, we compute the angular momentum of the sphere. The mass density is σM =

M/4πR2. The mass per ring is dM = 2πσMR2 sin θdθ. The angular momentum per

ring is then dL = dM(R sin θ)2ω = 2πωσMR4 sin3 θdθ. Integrating this over θ gives L =

2ωMR2/3, so the gyromagnetic ratio is Q/2M as claimed above.

(c)

In the case of the electron, we take L = h̄/2. Multiplying this by the gyromagnetic

ratio e/2me, we get eh̄/4me for the magnetic dipole moment. This is the correct answer

up to the “g factor” of the electron, which is approximately 2.
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