
Phys 100B WI06 Homework 1 Solutions

4.31

We have a cube at the origin of side a with polarization P = kr. The bound surface

and bulk charge densities are given by

σb = n̂ ·P, ρb = −∇ ·P. (1)

By symmetry, each of the six sides of the cube carries the same bound surface charge, so

we’ll focus on just one side, compute the total charge on that side, and multiply the result

by six. Consider the side with surface normal n̂ = x̂. From (1), we find σb = kx|x=a/2 =

ak/2. Integrating this over the surface of the cube yields 6× a3k/2 = 3a3k.

Next, we’ll consider the bound bulk charges. Here, we find from (1) that the charge

density is ρb = −3k. This is constant over the cube, so we just multiply by the volume

to get the total bulk charge: −3a3k. Adding this to the total surface charge found above

yields a total charge of zero for the cube.

4.32

Since we have spherical symmetry in this problem, we can use Gauss’ Law to find D

everywhere:

D =
q

4π

r̂

r2
. (2)

From this, we can find E and P inside the sphere:

E =
D
ε

, P = ε0χeE. (3)

Here, ε = ε0(1 + χe). Outside the sphere, E = D/ε0 and P = 0.

From the expression for P, it is straight-forward to find the bound surface charge

density at the outer surface of the sphere:

σb = n̂ ·P|r=R = |P|(r = R) =
χeq

4π(1 + χe)R2
. (4)

The bound surface charge is thus

Qsurface
b =

qχe

1 + χe
. (5)
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The bulk bound charge density is given by

ρb = −∇ ·P = − 1
r2

∂

∂r
(r2|P|). (6)

Since r2|P| is a constant, you might be inclined to say that ρb is zero, but that would lead

to a contradiction since we know that we must have Qbulk
b = −Qsurface

b 6= 0. The problem

is that the expression we have used for the divergence operator in spherical coordinates is

not well defined at r = 0. So we have at least shown that ρb = 0 everywhere but at r = 0,

where ρb 6= 0. This means that ρb must be proportional to a Dirac delta function:

ρb = − χeq

1 + χe
δ(r). (7)

We have fixed the coefficient by requiring that Qbulk
b = −Qsurface

b .

Note that you can also arrive at this result by considering example 4.5 in the book.

Here, Griffiths considers a conducting charged sphere inside the spherical dielectric, instead

of a point charge. In this case, ρb = 0 everywhere, and the conductor and dielectric surfaces

have equal and opposite total surface charge, giving Qtotal
b = 0. If we make the conducting

sphere smaller and smaller (ie take a → 0), we find that we still get a nonvanishing charge

on the inner surface even though the surface area vanishes in this limit (Qinner
b doesn’t

depend on r). In this case, we might think of the extra bound charge as being on the

“surface” of the point charge. Whichever way we do the problem, we see that the charge

on the surface of the dielectric is canceled by a bound charge at r = 0.

4.33

To do this problem, we need to consider the boundary conditions for the electric field

(see eqns 4.29 and 4.40 in the book):

E
‖
1 = E

‖
2 , ε1E

⊥
1 = ε2E

⊥
2 . (8)

From Fig 4.34 in the book, it is evident that

E‖ = E sin θ, E⊥ = E cos θ. (9)

We thus have

E1 sin θ1 = E2 sin θ2, ε1E1 cos θ1 = ε2E2 cos θ2. (10)
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Solving each of these equations for E1/E2 and equating the results gives

tan θ2

tan θ1
=

ε2
ε1

. (11)

4.36

(a)

We start by assuming the potential is the same as we would get without the dielectric,

namely

V =
V0R

r
. (12)

We know this must be the potential since, in the absence of the dielectric, spherical sym-

metry tells us that the charges on the surface of the conductor must be evenly distributed.

In this case, the potential outside the sphere is the same as that of a point charge at the

origin, so it must be proportional to 1/r. The boundary condition, V (r = R) = V0 fixes

the coefficient. This potential gives

E = −∇V =
V0R

r2
r̂, P = ε0χeE. (13)

We then find for the bound charges that

ρb = −∇ ·P = − 1
r2

∂

∂r
(r2Pr) = 0,

σb = n̂ ·P = −r̂ ·P = −|P|(r = R) =
{

0 empty space hemisphere
−ε0χeV0/R dielectric hemisphere

}
.

(14)

For the free charges, we have

ρf = ε0∇ ·E = 0,

σf = εoutE
⊥
out − εinE⊥

in =
{

ε0V0/R empty space hemisphere
ε0(1 + χe)V0/R dielectric hemisphere

}
.

(15)

In the last expression, Eout corresponds to the electric field in either empty space or in the

dielectric, while Ein = 0 is the field in the conductor.

(b)

If we combine the above charge distributions, we find that ρ = 0 everywhere, and

σ = ε0V0/R everywhere on the surface of the conductor. Since this charge distribution is

uniformly distributed over the surface of the conductor, it generates the same potential as
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for a single point source of charge 4πR2 × ε0V0/R = 4πε0V0R. The potential for a point

source of charge q is just q/4πε0r, so we get back the potential we assumed in part (a).

(c)

We have found a self-consistent solution to the problem, so by the theorem quoted in

problem 4.35 of the book, we have found the solution. All the conditions of the theorem

are satisfied in the statement of the problem, namely the susceptibilities of each dielectric

and the potential on every surface are specified. You may have noticed that our solution

appears to have an inconsistency though: the bound charges don’t add to zero. This is

due to the fact that our system is not finite—our dielectric extends to infinity. A finite

dielectric would have an additional surface, and this surface would carry just the right

surface charge density to cancel that which we computed in part (a).

(d)

We would be able to solve configuration (b) with the same potential, but not config-

uration (a). This is because in (a), the boundary between the dielectric and empty space

(ie outside the conductor) is not parallel to the electric field. This means that there will

be bound charges on this surface as well, destroying the spherical symmetry we needed to

have the potential of part (a), and yielding an inconsistency. In the original problem and

in configuration (b), the component of the electric field perpendicular to this boundary

vanishes, which implies that the perpendicular component of the polarization ~P vanishes,

meaning that there is no surface charge. So all is well in these cases.
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